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Abstract 

The intensity of the Gaussian ray corresponds to the curve of the normal distribution in free 

space. As it spreads, divergence and width increase with distance. Using the paraxial 

approximation, the effect of distance on intensity, width, radius of curvature and divergence 

was investigated. The Matlab program was used to calculate the parameters of the 

characteristics. The result obtained in this work indicates smaller angles of divergence, 

which can provide better beam quality and intensity. Finally, it will be of great importance 

for applications such as pointing, optical communication in free space, etc. 

 

Keywords: Gaussian beam, paraxial approximation, ray divergence, normal distribution 

curve. 

 

 

Introduction 

Interest in high-speed optical (FSO) free-space laser communication (FSO) systems has grown 

significantly in recent years due to some of the advantages offered by FSO systems over radio 

frequency (RF) systems. FSO systems include three main subsystems: transmitter, channel, and 

receiver [1]. The transmitter and receiver include some optical elements to reduce the signal-to-

noise ratio (SNR) by optimizing the divergence and focusing parameters in the transmitter and 

receiver, respectively [2]. 

Some unique characteristics are also revealed, such as self-induced mode transformation [3], three-

dimensional inhomogeneous scaling caused by power change [4]. It is well known that Gaussian 

beams provide a realistic model for describing the laser mode field of many laser systems. 

However, solutions in the form of Gaussian beams can be easily obtained only in the paraxial 

approximation of the wave equation or Maxwell's equations. In this work, the calculations are 

based on Maxwell's equations, from which the Helmholtz equation is derived. The Helmholtz 

equation was solved analytically using the paraxial approximation to produce the paraxial wave 

equation (PWE). From the solution (PWE), the equations of Gaussian beam width, radius of 

curvature, divergence, and intensity were obtained and modeled. 

1. Basic theory 

The starting point of this work is Maxwell's equations ([5]): 
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For free space, the differential equation that must be satisfied to determine the spatial behavior of 

the wave is called the Helmholtz equation. This equation is given as follows: 

 
2. Paraxial approximation 

Gaussian beams are usually considered in situations where the beam divergence is relatively small, 

so the so-called paraxial approximation can be applied. This approximation assumes that the 

direction of light propagation is very close to the z-axis and that the propagation distance along 

this axis more than the transverse propagation of the wave. Considering the wave equation in the 

Helmholtz expression ([5]): 

 

 

where E(x, y, z) is the complex amplitude of the scalar and monochromatic optical field 

propagating in free space. Assuming that the scalar wave of the form, which propagates almost 

parallel to the z-axis, is expressed by 

how: 

Equation (12) is the width and intensity of the Gaussian ray, respectively. While equations (13) 

represent the radius of curvature and divergence, respectively. 
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3. Simulation results. Optical beam intensity 

In this section, the intensity and phase structures of the Gaussian vortex beam were simulated using 

MATLAB. Some basic characteristics of vortex beam propagation were obtained by simulation. 

The simulation results show the annular intensity profile of the vortex beam and its phase 

structures, the spiral twisting (clockwise and counterclockwise) of the phase structures for positive 

and negative values of topological charges. The structures of the Gaussian vortex beam for a 

specific topological charge were modeled at different values of Z along the direction of 

propagation and the phase structures of Gaussian vortex beams of different values  of W(Z) given 

with. 
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Fig.1. Structure of a Gaussian vortex ray. 

 

By integrating equations (6) and using equations (7-9), we modeled the intensity profile of the 

vortex beam, respectively, using the MATLAB program (Fig. 1). The intensity of the optical beam 

is determined by the formula 

I(r) | E(r) |2, 

Since the beam intensity is a function of the axial and radial distance z and 

r2  x2  y2 , then the last formula is given as 

 in 2  x2  y2  

I  I0  0   
 exp  

  

(14) 

 w(z)   w2 (z)  

For the value with intensity is a function of Gauss. The Gaussian function has 

Maximum value at r  0  

Figure 2. 

, and this falls monotonically with the rise of r, as shown in 
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Fig.2. Intensity profile of the vortex beam, 

The results of our simulations clearly show this ring-shaped shape intensity profile with a dark 

center (Figure 2). 

 

Conclusion 

In this paper, the intensity and phase structures of the Gaussian and Gaussian vortex beams were 

modeled using MATLAB. Some basic characteristics of vortex beam propagation were obtained 

by simulation. The simulation results show the annular intensity profile of the vortex beam and its 

phase structures, the spiral twisting (clockwise and counterclockwise) of the phase structures for 

positive and negative values of topological Charges. As a result of the simulation, images of the 

behavior of laser beams, which are described by Gaussian vortex modes, were obtained through a 

waveguide with a parabolic dependence of the refractive index. It has been observed that at low 

values of w(z) in a quarter of the propagation period, the vortex is preserved 

in the center. But with a higher order, this preservation is not observed. In the center there is a 

concentrated non-zero beam. 

 

References 

1. H. Kogelnik, T. Li, “Laser Beams and Resonators”, Appl. Opt., No. 5, pp. 1550-1567, 1966. 

2. P.A. Belanger, “Beam Propagation and the ABCD Ray Matrices”, Opt. Letters, No. 16, pp. 

196-198, 1991. 

3. J.R. Pierce, “Modes in Sequences of Lenses”, PNAS USA, No. 47, pp. 1808-1813, 1961. [4]H. 

Kogelnik, “Imaging of Optical Mode-Resonators with Internal Lenses”, Bell Sys. Tech. J., No. 

44, p. 455, 1965. 

4. H. Kogelnik, “On the Propagation of Gaussian Beams of Light through Lenslike Media 

Including those with a Loss or Gain Variation”, Appl. Opt., No. 4, pp. 1562-1569, 1965. 

5. Q. Zhong, J.T. Fourkas, “Optical Kerr Effect Spectroscopy of Simple Liquids”, J. Phys. Chem. 

B, No. 112, pp. 15529-15539, 2008. 

6. R. Boyd, “Nonlinear Optics”, 3rd Ed., San Diego, CA: Academic Press, 2003. 

7. G. New, “Introduction to Nonlinear Optics”, Cambridge University Press, Cambridge, 2011.  

8. Z. Chang, “Fundamentals of Attosecond Optics”, Boca Raton, FL, CRC Press, 2011. 

 


