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ABSTRACT 

In the present paper, we precisely describe the location and structure of the essential spectrum 

of a 3×3 operator matrix A_μ,μ>0 associated to a system describing three particles in 

interaction, without conservation of the number of particles, in the quasi-momentum 

representation. Two and three-particle branches of the essential spectrum of A_μ are identified. 

The number of segments of the essential of A_μ is studied with respect to the parameter μ>0. 
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In statistical physics [1, 2], solid-state physics [3] and the theory of quantum fields [4] some 

important problems arise where the number of quasi-particles is bounded, but not fixed. In [5] 

geometric and commutator techniques have been developed in order to find the location of the 

spectrum and to prove absence of singular continuous spectrum for Hamiltonians without 

conservation of the particle number. Recall that the study of systems describing 𝑁 (1 ≤ 𝑁 <

∞) particles in interaction, without conservation of the number of the particles, is reduced to 

the investigation of the spectral properties of self-adjoint operators, acting in the cut subspace 

ℋ(𝑁) of Fock space, consisting of 𝑛 ≤ 𝑁 particles [2-5]. We note that the location and structure 

of the model operators acting in ℋ(3) are studied in detail in [6-8]. 

Denote by 𝕋1 the one-dimensional torus. Let ℋ0 ≔ ℂ be the field of complex numbers, ℋ1 ≔

𝐿2(𝕋
1) be the Hilbert space of square integrable (complex) functions defined on 𝕋1 and ℋ2 ≔

𝐿2
𝑠 (𝕋2) be the Hilbert space of square-integrable symmetric (complex) functions on 𝕋2.  

Denote by ℋ the direct sum of spaces ℋ0, ℋ1 and ℋ2, that is, 

ℋ ≔ℋ0⨁ℋ1⨁ℋ2.  By the definition a block operator matrix is a matrix the entries of which 

are linear operators and every bounded linear operator acting in the Hilbert spaces ℋ can be 

written as a block operator matrix of order 3. 

In the present paper we consider the operator 𝒜𝜇 , 𝜇 > 0 acting in the Hilbert space ℋ as a 

block operator matrix 

𝒜𝜇 = (

𝐴00 𝜇𝐴01 0
𝜇𝐴01

∗ 𝐴11 𝜇𝐴12
0 𝜇𝐴12

∗ 𝐴22

),                                        (1) 

with the matrix elements 𝐴𝑖𝑗: ℋ𝑗 → ℋ𝑖 , 𝑖 ≤ 𝑗, 𝑖, 𝑗 = 0,1,2 are defined by 
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𝐴00𝑓0 = 𝜀𝑓0,        𝐴01𝑓1 = ∫ sin 3𝑡 𝑓1(𝑡)

𝕋1

𝑑𝑡 

(𝐴11𝑓1)(𝑥) = (𝜀 + 1 − (cos 3𝑥))𝑓1(𝑥), 

𝐴12𝑓2(𝑥) = ∫ sin 3𝑡 𝑓2(𝑥, 𝑡)𝑑𝑡

𝕋1

 

(𝐴22𝑓2)(𝑥, 𝑦) = (𝜀 + 2 − (cos 3𝑥) − (cos 3𝑦))𝑓2(𝑥, 𝑦). 

Here 𝑓𝑖 ∈ ℋ𝑖 , 𝑖 = 0,1,2. Under these assumptions the operator matrix 𝒜𝜇 defined by the 

formula (1) is linear, bounded and self-adjoint in ℋ. 

We remark that the operators 𝐴01, 𝐴12 and 𝐴01
∗ , 𝐴12

∗  are called annihilation and creation 

operators [4], respectively. In physics, an annihilation operator is an operator that lowers the 

number of particles in a given state by one, a creation operator is an operator that increases the 

number of particles in a given state by one, and it is the adjoint of the annihilation operator.

  

It is clear that  

(𝐴01
∗ 𝑓0)(𝑥) = 𝑠𝑖𝑛3𝑥 ⋅ 𝑓0,   𝑓0 ∈ ℋ0; 

(𝐴12
∗ 𝑓1)(𝑥, 𝑦) =

1

2
(𝑠𝑖𝑛3𝑥 ⋅ 𝑓1(𝑦) + 𝑠𝑖𝑛3𝑦 ⋅ 𝑓1(𝑥)), 𝑓1 ∈ ℋ1. 

In order to study the essential and discrete spectra of the operator matrix 𝒜𝜇 we introduce a 

generalized Friedrichs model ℎ𝜇 , 𝜇 > 0 which acts in  ℋ0⨁ℋ1 as 

ℎ𝜇 ≔ (
𝐴00 𝜇𝐴01
𝜇𝐴01

∗ 𝐴11
). 

It’s matrix elements 10,,,,  jijiAij  are given in the above. It is not difficult to prove that 

operator ℎ𝜇 is linear, bounded and self-adjoint. We consider operator matrix  ℎ0 in the Hilbert 

space  ℋ0⨁ℋ1 as 

ℎ0 ≔ (
𝐴00 0
0 𝐴11

) 

The perturbation ℎ − ℎ0 of the operator ℎ0 is a bounded self-adjoint operator matrix of rank 2. 

From the definition one can conclude that the spectrum of  ℎ0 is equal to  

𝜎(ℎ0) = 𝜎(𝐴00)⋃𝜎(𝐴11) 

where 

𝜎(𝐴00) = 𝜎disc(𝐴00) = {𝜀};           𝜎(𝐴11) = 𝜎ess(𝐴11) = [𝜀; 𝜀 + 2]. 

According to the famous Weyl’s theorem on the conservation of the essential spectrum under 

finite rank perturbations implies that the essential spectra of operators ℎ0 and ℎ𝜇 coincide. 

Therefore 

𝜎ess(ℎ𝜇) = 𝜎ess(ℎ0) = [𝜀, 𝜀 + 2]. 

One can see that 

min
𝑥∈𝕋1

(𝜀 + 1 − (cos 3𝑥)) = 𝜀 + 1 − 1 = 𝜀 

max
𝑥∈𝕋1

(𝜀 + 1 − (cos 3𝑥)) = 𝜀 + 1 + 1 = 𝜀 + 2 
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We consider the eigenvalue equation ℎ𝜇𝑓 = 𝑧𝑓. This equation can be written as the following 

system of equation: 

{
 

 
𝜀𝑓0 +  𝜇 ∫ 𝑠𝑖𝑛(3𝑡)𝑓1(𝑡)𝑑𝑡

𝕋1

= 𝑧𝑓0

𝜇sin(3𝑥) 𝑓0 + (𝜀 + 1 + cos(3𝑥))𝑓1(𝑥) =  𝑧𝑓1(𝑥)

                       (1) 

We write the second equation of the system of equation (1) in the form: 

𝜇sin(3𝑥) 𝑓0 = (𝑧 − 𝜀 − 1 + cos(3𝑥))𝑓1(𝑥)                          (2) 

Since 𝑧 ∉ [𝜀; 𝜀 + 2], for any 𝑥 ∈ 𝕋1 we have 𝜀 + 1 − cos(3𝑥) − 𝑧 ≠ 0. Then from the 

equality (2) for 𝑓1(𝑥) we obtain 

𝑓1(𝑥) =  
𝜇 sin(3𝑥)

𝑧 − 𝜀 − 1 + cos(3𝑥)
𝑓0                                      (3) 

Substituting the expression (3) for 𝑓1(𝑥) into the first equation in the system (1), we obtain 

𝜀𝑓0 + 𝜇
2 ∫

sin2(3𝑡) 𝑑𝑡

𝑧 − 𝜀 − 1 + cos(3𝑡)
𝑓0

𝕋1

− 𝑧𝑓0 = 0 

or 

𝑓0 (𝜀 − 𝑧 + 𝜇
2 ∫

sin2(3𝑡)𝑑𝑡

𝜀 − 𝑧 + 1 − cos(3𝑡)
𝕋1

) = 0 

 For any fixed 𝜇 > 0, we define an analytic function ∆𝜇(∙) in ℂ\[𝜀; 𝜀 + 2] by: 

∆𝜇(𝑧) ∶= 𝜀 − 𝑧 − 𝜇2 ∫
sin2(3𝑡)𝑑𝑡 

𝜀 + 1 − cos(3𝑡) − 𝑧
𝕋1

. 

Usually the function ∆𝜇(∙) is called the Fredholm determinant associated with the operator 

matrix ℎ𝜇. Let us establish a relation between the eigenvalues of ℎ𝜇 and zeros of ∆𝜇(∙) . 

Lemma 1. For any fixed 𝜇 > 0 the operator matrix 𝒜𝜇 has the eigenvalue 𝑧𝜇 ∈ ℂ\[𝜀; 𝜀 + 2] 

if and only if  ∆𝜇(𝑧𝜇) = 0. 

From Lemma 1 it follows that for the discrete spectrum of 𝒜𝜇 the equality  

𝜎disc(𝒜𝜇) = {𝑧 ∈ ℂ[𝜀; 𝜀 + 2]: ∆𝜇(𝑧) = 0} 

holds.  

 The following lemma describes the number and location of the operator matrix 𝒜𝜇. 

Lemma 2. For any 𝜇 > 0 the operator matrix ℎ𝜇 has two eigenvalues, one to the left of 𝜀 and 

the other to the right of 𝜀 + 2. 

 For the spectrum of operator matrix ℎ𝜇 we have  

𝜎(ℎ𝜇) = {𝐸𝜇
(1)
} ∪ [𝜀; 𝜀 + 2],     if     𝜇 ≤ 1

√𝜋
⁄ , 

𝜎(ℎ𝜇) = {𝐸𝜇
(1)
} ∪ [𝜀; 𝜀 + 2] ∪ {𝐸𝜇

(2)
},     if      𝜇 > 1

√𝜋
⁄  

where the numbers 𝐸𝜇
(1)

 and 𝐸𝜇
(2)

 are zeros of ∆𝜇(∙) where 

𝐸𝜇
(1)
< 𝜀,     𝐸𝜇

(2)
> 𝜀 + 2. 
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 Indeed, 

∆𝜇(𝜀) = 𝜀 − 𝜀 − 𝜇2 ∫
sin2(3𝑡)𝑑𝑡 

𝜀 + 1 − cos(3𝑡) − 𝜀
=

𝕋1

− 𝜇2 ∫
sin2(3𝑡)𝑑𝑡 

1 − cos(3𝑡)
=

𝕋1

 

= −𝜇2 ∫
(1 − cos(3𝑡))(1 + cos(3𝑡)) 

1 − cos(3𝑡)
𝑑𝑡 =

𝕋1

− 𝜇2 ∫ 𝑑𝑡 = −2𝜋𝜇2 < 0;

𝕋1

 

∆𝜇(𝜀 + 2) = 𝜀 − 𝜀 − 2 − 𝜇
2 ∫

sin2(3𝑡)𝑑𝑡 

𝜀 + 1 − cos(3𝑡) − 𝜀 − 2
=

𝕋1

 

= −2 + 𝜇2 ∫
sin2(3𝑡)𝑑𝑡 

1 + cos(3𝑡)
𝕋1

= −2 + 𝜇2 ∫
(1 − cos(3𝑡))(1 + cos(3𝑡)) 𝑑𝑡 

1 + cos(3𝑡)
𝕋1

= 

= −2 + 𝜇2 ∫(1 − cos(3𝑡))𝑑𝑡

𝕋1

= −2 + 𝜇2 ∫ 𝑑𝑡 =

𝕋1

− 2 + 𝜇22𝜋; 

From here one can see that 

∆𝜇(𝜀 + 2) > 0, if     𝜇 > 1
√𝜋
⁄ ; 

∆𝜇(𝜀 + 2) ≤ 0,         if     𝜇 ≤ 1
√𝜋
⁄ . 

The following theorem describes the location of essential spectrum of  

𝒜𝜇.  

Theorem 1. The essential spectrum 𝜎ess(𝒜𝜇) of  

𝒜𝜇 satisfies 

𝜎ess(𝒜𝜇) = [𝐸𝜇
(1)
+ 𝜀;  𝐸𝜇

(1)
+ 𝜀 + 2] ∪ [𝜀; 𝜀 + 4],     if   𝜇 ≤ 1

√𝜋
⁄ ; 

𝜎ess(𝒜𝜇) = [𝐸𝜇
(1)
+ 𝜀;  𝐸𝜇

(1)
+ 𝜀 + 2] ∪ [𝜀; 𝜀 + 4] ∪ [𝐸𝜇

(2) + 𝜀; 𝐸𝜇
(2) + 𝜀 + 4],

if   𝜇 > 1
√𝜋
⁄ . 

Definition 1. The sets 𝜎two(𝒜𝜇) and 𝜎three(𝒜𝜇) = [𝜀; 𝜀 + 4] are called the two-particle and 

three-particle branches of the essential spectrum 𝜎ess(𝒜𝜇) of 𝒜𝜇, where  

𝜎two(𝒜𝜇) = [𝐸𝜇
(1)
+ 𝜀;  𝐸𝜇

(1)
+ 𝜀 + 2] ∪ [𝜀; 𝜀 + 4],     if   𝜇 ≤ 1

√𝜋
⁄ ; 

𝜎two(𝒜𝜇) = [𝐸𝜇
(1)
+ 𝜀;  𝐸𝜇

(1)
+ 𝜀 + 2] ∪ [𝜀; 𝜀 + 4] ∪ [𝐸𝜇

(2) + 𝜀; 𝐸𝜇
(2) + 𝜀 + 4], 

if   𝜇 > 1
√𝜋
⁄  
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