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Abstract 

In this paper, we present a numerical physical splitting approach ¬using the Fourier 

transform (SSFT) to solve the one-dimensional nonlinear Schrödinger equation (NLSE) that 

includes the fiber loss term. Although this basic equation defines the propagation of a pulse 

in a loss fiber, it is not supported by an accurate analytical solution. Based on this, the 

MATLAB numerical results confirm that the physical splitting numerical approach ¬using 

the Fourier transform (SSFT) demonstrates superior performance compared to other 

proposed schemes in simulating the propagation of solitons in a loss optical fiber. 
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Introduction 

Partial differential equations are a widely used mathematical apparatus in the development 

of models in various fields of science and technology. Unfortunately, the explicit solution 

of these equations in an analytical form is possible only in special simple cases, and, as a 

result, the possibility of analyzing mathematical models is provided by solving these 

equations by approximate numerical methods. In recent years, non-linear evolution 

equations have become a very active field for describing various areas of non-linear 

sciences. One-dimensional nonlinear Schrödinger equation (1D NLSE) is a classical field 

equation. Its most prominent applications are related to the propagation of light waves in 

optical fibers and planar waveguides along with many others [1]. In particular, 1D NLSE is 

a non-linear second-order partial differential equation applicable to both classical and 

quantum mechanics. The nonlinear Schrödinger equation has an extremely high universality 

and is used to describe wave processes in many areas of physics: in the theory of surface 

waves [1], in models of the evolution of plasma oscillation distributions [2], nonlinear optics 

[3], biophysics, etc. . The non-linear Schrödinger equation describes the propagation of non-

linear Langmuir waves, waves in deep water; waves in transmission lines, acoustic waves 

in liquids with bubbles and, above all, the propagation of optical radiation in nonlinear 

media. A typical application of the nonlinear Schrödinger equation is the dynamics of optical 

pulses in an optical fiber. The time evolution of the envelope of an optical pulse in a fiber is 
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well approximated by the nonlinear Schrödinger equation, including the description of very 

long transoceanic optical communication lines, see, for example, [4, 5]. The nonlinear 

Schrödinger equation under consideration is a nonlinear differential equation with partial 

derivatives, which in the general case cannot be solved analytically. Therefore, numerical 

simulation methods are used to solve this problem. The numerical methods used to solve the 

propagation equations can be divided into two classes: pseudospectral methods and finite 

difference schemes. In the general case, pseudospectral methods turn out to be an order of 

magnitude faster than difference schemes, with the same calculation accuracy [6]. The most 

common method for solving equations is the method of splitting into physical processes 

using the Fourier transform at a linear step ( Split - Step Fourier Method, SSFM ) [7, 8]. 

This method is easy to implement, fast, and has high accuracy with respect to the time 

variable. The high counting rate of the splitting method is achieved due to the use of the fast 

Fourier transform algorithm [9]. 

 

1. Basic equations and methodology 

This paper presents a split-step Fourier transform (SSFT) numerical approach for solving 

the one-dimensional nonlinear Schrödinger equation (NLSE). This impressive numerical 

method is essential to understanding the nonlinearity of fiber optics, as both dispersion and 

nonlinear effects are introduced in this process. It is it that can be effectively used to simulate 

the propagation of light pulses in an optical fiber over a short distance h . In addition, it is 

useful to consider its advantage in being a faster approach, especially when compared to the 

finite difference approach. In particular, 1D NLSE is a non-linear second-order partial 

differential equation applicable to both classical and quantum mechanics. This can be 

written as follows [2]: 
2
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Rearranging the terms of equation (1) in the form 

(L N) ,
t
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Let's assume that the linear operator is 
2

2
L i

x


=


, and the non-linear operator is 2N i | |=   . 

We then split it into two parts to solve the problem as follows. Part one, the non-linear step 

is introduced as: N ,
t


= 


where 2N i | |=   . Therefore, the analytical solution will have the 

following form: 
2(x, t ) exp(i N) exp(i | | ) . + =   =                                          (4) 

 

We apply a Fourier transform to both sides to convert PDE to ODE in the frequency domain 

to make it easier to solve, as follows: 

 2i ik .
t


= − 

                                                                
(5) 



                          

                      

 

175 

Equation (5) shows the analytical solution of the previous equation, but calculated in the 

frequency domain: 
2(x, t ) exp( ik ) . + = −                                                      (6) 

when discretizing the first-order time derivative using the appropriate finite difference 

relation. Finally, we apply the inverse Fourier transform to both sides to get the final 

equation shown below [7]: 
1 2 2(x, t ) F (exp( ik ) F(exp(i | | ) )).− + = −                                      (7) 

 

2. Numerical results 

In this section, a number of labeled numerical examples are carried out to test how efficient, 

fast, and accurate the proposed numerical methods are, especially when compared to an 

exact analytical solution. In particular, the MATLAB software was used to run these tests, 

which were performed to measure the accuracy of various numerical approaches, evaluate 

the error, and choose the most reliable and fastest approach to solve the NLSE. In all 

proposed methods, NLSE is solved discretely for different values of time and space [9]. For 

the numerical experiment, we discretize the spatial domain x from -10 to 10 by setting the 

parameters in equation (1), respectively. This leads to initial  condition 

i
(x,0) 2 exp x sec hx.

2

 
 =  

 
                                                   (8) 

The boundary conditions are  

(L, t) 0, ( L, t) 0. =  − =                                                 (9) 

where x L,L= − and for t 0.  We plotted the solution obtained with our numerical methods 

over the spatial domain x from −10 to 10 and in the time domain t from 0 to 1 using different 

spatial steps x 0.1 1 =  at the time step t 0.001, = computed at time t 0.1 1=  . Our modeling 

strategy is to use different spatial steps h with other parameters fixed, and then adapt 

different time steps T without changing the other parameters. The sizes of these steps are 

dimensionless, and their values determine the accuracy of the experiment. In particular, the 

smaller their values, the more accurate the approximate numerical solution becomes. On fig. 

1-3 are graphs of the exact bright one-soliton solution in three dimensions to accurately 

focus on the actual shape of this pulse during the comparison process. 

 

Fig.1. A 3D graph of approximate numerical solution of 1D NLSE using the split-step Fourier 

transform (SSFT) approach   
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According to the results presented in these figures, the method of splitting into physical 

processes using the Fourier transform ensures high accuracy of the numerical solutions of 

the nonlinear Schrödinger equation. On the other hand, as can be seen from the figures, the 

result obtained by the implicit exponential difference scheme has better results than the 

results obtained by other numerical schemes. These calculations show that the accuracy of 

the solutions is quite high even in the case of a small number of grid nodes. 

 

Conclusion 

In this study, we consider the method of splitting using the Fourier transform for the 

numerical simulation of the nonlinear Schrödinger equation. Approximate solutions of the 

nonlinear Schrödinger equation were obtained using Matlab program. It is shown that the 

proposed method significantly increases the computational costs. This improvement 

becomes more significant, especially for large time evolutions. 
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